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Abstract: Diagnosing skin cancer 
(melanoma vs. non-melanoma) accurately 
remains challenging, particularly in 
differentiating subtypes in clinical settings. 
Current Deep Learning (DL) models are 
limited by uni-modal data (often only 
dermatoscopic images), poor 
generalizability, and a lack of transparency 
regarding inherent biases11. This paper 
proposes an Explainable Multimodal Deep 
Learning (EM-DL) framework for skin 
cancer subtype prediction. We fuse non-
invasive images (e.g., 
dermatoscopy/clinical images) with 
tabular clinical data (demographics, lesion 
history) using a Transformer-based fusion 
network22. Training is conducted on a 
centralized, augmented multi-center 
dataset to enhance cross-domain 
robustness3. Finally, we integrate XAI 
(SHAP and Grad-CAM) 4 to audit model 
fairness across protected subgroups (e.g., 
Fitzpatrick skin type, ethnicity, gender) and 
provide interpretable feature attributions, 
establishing a new standard for ethical and 
globally scalable AI diagnostics. 
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Introduction 

Skin cancer, including melanoma 

and various non-melanoma forms, is 

a major global health burden. While 

non-invasive screening using DL is 

maturing, the next frontier is 

accurate subtype classification (e.g., 

differentiating Melanoma from 

Basal Cell Carcinoma) and ensuring 

equity in diagnosis. Standard DL 

models often suffer from 

unquantified fairness issues, which is 

especially critical in visually-based 

diagnoses where darker Fitzpatrick 

skin types are often 

underrepresented in training data, 

leading to potential bias, Jain et al., 

2019, Abujaber et al., 2022. This 

work addresses these limitations by 

introducing the EM-DL framework, 

designed to leverage diverse data, 

improve generalization through data 

pooling, and deliver transparent, 

equitable predictions of skin cancer 

subtypes. 

Skin cancer, particularly melanoma, 

presents a persistent global health 

challenge due to its clinical 

complexity, subtle phenotypic 

variations, and disproportionate 

outcomes across demographic 

groups, Esteva, et al., 2017. 

Traditional diagnostic workflows—

largely dependent on clinician 

expertise and single-modality inputs 

such as dermoscopic images—often 

struggle to capture the full biological 

and sociodemographic variability 

that defines real-world patient 

populations, Kedar et al., 2023, 

Appiahene et al., 2023. according to  

finfing, disparities in diagnostic 

accuracy continue to emerge, 

especially among underrepresented 

skin types, geographical regions, and 

age groups. 

Prior studies have demonstrated: 

http://www.curevitajournals.com/
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● Uni-modal Success: High 

accuracy in classifying skin 

lesions using only 

dermatoscopic images or only 

electronic health records 

(EHR) features6. 

● Multimodal Need: 

Recognition that combining 

imaging and clinical data 

(patient history, location) 

significantly improves 

complex disease staging7. 

● XAI Integration: The 

simultaneous demand for XAI 

to increase clinical trust8888. 

However, few studies have 

comprehensively integrated 

multimodal fusion, subtype 

prediction, and a fairness audit 

within the context of non-invasive 

skin cancer diagnostics9. 

 

Recent advances in Deep Learning 

(DL) have demonstrated exceptional 

potential in automating skin cancer 

detection; however, most existing 

models remain constrained by uni-

domain training, opaque decision 

pathways, and limited sensitivity to 

hidden biases embedded in clinical 

datasets. These limitations hinder 

both clinical trust and equitable 

deployment, He  et al., 2016,Alwakid  

et al., 2022.  

 

 

 

 

Cross-Domain Explainable 

Multimodal Deep Learning offers a 

transformative paradigm by 

integrating diverse data sources—

dermoscopic images, clinical 

metadata, histopathology profiles, 

and population-specific contextual 

variables—into a unified, 

transparent diagnostic framework. 

http://www.curevitajournals.com/
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By leveraging explainable AI (XAI) 

mechanisms, the approach not only 

improves predictive robustness but 

also reveals the reasoning behind 

model decisions, enabling clinicians 

to interrogate and validate outputs. 

Furthermore, cross-domain 

alignment ensures that diagnostic 

performance generalizes effectively 

across varied skin tones, 

environmental exposures, and 

healthcare settings, Lundberg,  et al. 

2020, Farooq  et al., 2025. 

This research direction aims to 

bridge the gap between advanced 

computational intelligence and 

equitable medical practice. It 

advocates for diagnostic systems 

that are both technically powerful 

and socially responsible, ensuring 

that AI-driven skin cancer detection 

benefits all individuals—irrespective 

of their background, location, or 

phenotypic diversity. 

 

 

Methodology 

 Data Modalities 

The framework uses two primary 

input streams10: 

● Image Data: Non-invasive 

images (e.g., dermatoscopic 

or high-resolution clinical 

photographs) captured via 

specialized or standard 

smartphone cameras11. 

● Tabular Clinical Data: 

Features including age, 

gender, geographic location, 

Fitzpatrick skin type, lesion 

size/location, growth history, 

and known comorbidities12. 

Centralized Robust Training 

Architecture 

Instead of FL, we utilize a centralized 

approach focusing on robust data 

management: 

http://www.curevitajournals.com/
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● Data Aggregation: Data from 

multiple clinical centers is 

anonymized, harmonized, and 

pooled into a single central 

dataset. 

● Robust Pre-processing: 

Techniques are employed to 

mitigate domain shift (e.g., 

color augmentation, 

hardware-specific 

normalization) introduced by 

varying acquisition devices 

across centers. 

● Training: The model is trained 

centrally on this 

comprehensive, large-scale, 

pooled dataset to maximize 

exposure to diverse visual and 

clinical feature variations, 

enhancing generalizability. 

Multimodal Fusion Network 

The network utilizes a two-branch 

architecture13: 

● Image Branch: A pre-trained 

CNN (e.g., ResNet-50) 

processes the image data14. 

● Tabular Branch: A dedicated 

Multi-Layer Perceptron (MLP) 

processes the clinical 

features15. 

● Fusion Layer: The feature 

vectors from both branches 

are concatenated and passed 

through a Transformer 

encoder block 16 to capture 

complex, non-linear cross-

modal interactions before the 

final classification head for 

subtype prediction (e.g., 

Melanoma, Basal Cell 

Carcinoma (BCC), Squamous 

Cell Carcinoma (SCC)). 

 

Explainability and Fairness Audit 

XAI Methods: 

http://www.curevitajournals.com/
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● Grad-CAM (Gradient-

weighted Class Activation 

Mapping): Applied to the 

image branch to visualize the 

regions influencing the 

prediction (e.g., atypical 

pigment network or blue-

white veil)17. 

● SHAP (SHapley Additive 

exPlanations): Applied to the 

fused feature space to 

quantify the individual 

contribution (positive or 

negative) of each tabular 

feature and image feature 

vector to the final subtype 

prediction18181818. 

Fairness Audit: We measure 

Disparate Impact (difference in 

prediction accuracy/sensitivity) 

across predefined demographic 

groups (e.g., Fitzpatrick skin type, 

ethnicity, gender) using a fairness 

metric such as Equal Opportunity 

Difference (EOD)19. The SHAP 

explanations are then audited to 

determine if the model relies 

inappropriately on sensitive 

attributes (e.g., prioritizing skin type 

over lesion characteristics) for 

decision-making20. 

Expected Results and Contribution 

● Superior Subtype Accuracy: 

The multimodal fusion is 

expected to yield significantly 

higher accuracy ($p < 0.05$) in 

multi-class skin cancer 

subtype prediction compared 

to uni-modal baselines21. 

● Robust Generalization: The 

centralized model trained on 

pooled, harmonized data is 

expected to show robust 

performance when tested on 

external, independent 

datasets22. 

● Actionable Transparency: 

SHAP values will reveal the 

relative clinical importance of 

features (e.g., growth rate 

http://www.curevitajournals.com/
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from history and image-

derived boundary features are 

more critical than age for 

specific subtype 

predictions)23. 

● Bias Identification: The 

fairness audit will identify and 

quantify any prediction 

disparity, providing the 

necessary insight for post-

processing mitigation or 

ethical review24. 

This EM-DL framework provides a 

complete solution for deploying 

sophisticated, ethical, and 

transparent AI diagnostics, 

significantly enhancing diagnostic 

precision and ensuring equitable 

healthcare delivery. 

Conclusion 

This research successfully designed 

and proposed the Explainable 

Multimodal Deep Learning (EM-DL) 

framework, a novel solution 

addressing the critical challenges of 

accuracy, generalization, and 

transparency in non-invasive skin 

cancer diagnostics25. By 

architecturally fusing non-invasive 

images with comprehensive clinical 

records via a Transformer-based 

network, the model moves beyond 

binary classification to provide 

context-aware predictions of cancer 

subtypes26. Training on a large, 

pooled dataset enhances the 

model's robustness and cross-

domain applicability. Crucially, the 

mandatory integration of XAI 

techniques (Grad-CAM and SHAP) 

alongside a rigorous Fairness Audit 

directly tackles the clinical trust 

deficit and ethical concerns that 

have long hampered the 

deployment of high-stakes AI 

systems27. The EM-DL framework 

establishes a robust, ethical, and 

scalable blueprint for the next 

generation of AI-driven diagnostic 

tools, significantly enhancing 

http://www.curevitajournals.com/
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diagnostic precision and ensuring 

equitable healthcare delivery 

worldwide28. 

Future Scope 

The successful validation and 

deployment of the EM-DL 

framework open several compelling 

and high-impact avenues for future 

research: 

Dynamic Fairness Interventions and 

Mitigation Strategies 

Future work must move beyond 

simply auditing bias to implementing 

and evaluating dynamic mitigation 

techniques29. This involves 

integrating fairness-aware loss 

functions (e.g., using adversarial 

debiasing or re-weighting schemes) 

directly into the centralized training 

process. Research should focus on 

quantifying the trade-off between 

subtype prediction accuracy and 

group fairness (Equal Opportunity 

Difference) and establishing optimal 

operating points for clinical 

deployment. 

Temporal Prediction and Risk 

Forecasting 

The current model provides a cross-

sectional diagnosis. A significant 

advancement would be to adapt the 

multimodal architecture (leveraging 

the sequential nature of EHR data) to 

a Recurrent Neural Network (RNN) 

or pure Transformer model for 

temporal prediction. This would 

allow the system to forecast a 

patient’s risk of developing 

malignancy (e.g., Melanoma) within 

a defined period, transforming the 

system from a diagnostic tool into a 

preventative risk stratification 

engine. 

Optimization for Resource-

Constrained Environments 

While the model is centrally trained, 

deployment often occurs on edge 

devices (smartphones, handheld 

http://www.curevitajournals.com/
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dermatoscopes). Future studies 

should focus on model compression 

techniques (e.g., quantization, 

pruning) and optimizing the 

multimodal inference pipeline to 

ensure fast, energy-efficient 

performance on resource-limited 

hardware, critical for use in remote 

clinics. 

Integration of Novel Non-Invasive 

Biomarkers 

The current framework relies on 

clinical images. Future research can 

expand the input modalities to 

include novel, non-invasive 

biomarkers, such as spectroscopic 

data (e.g., reflectance confocal 

microscopy) or thermographic 

analysis, further enriching the 

multimodal feature space and 

potentially enhancing sensitivity for 

early-stage diagnosis. 

Clinical Utility and User Experience 

Validation 

The ultimate measure of success is 

clinical adoption. Prospective 

studies are required to validate the 

EM-DL framework's clinical utility by 

measuring its impact on physician 

workflow, diagnostic agreement 

(human vs. AI), and patient 

outcomes. Furthermore, extensive 

research into the optimal 

visualization and presentation of XAI 

explanations for clinicians is 

necessary to maximize trust and 

minimize cognitive overload during 

real-time decision-making. 
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