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(melanoma vs. non-melanoma) accurately
remains challenging, particularly in
differentiating subtypes in clinical settings.
Current Deep Learning (DL) models are
limited by uni-modal data (often only
dermatoscopic images), poor
generalizability, and a lack of transparency
regarding inherent biases!!. This paper
proposes an Explainable Multimodal Deep
Learning (EM-DL) framework for skin
cancer subtype prediction. We fuse non-
invasive images (e.g.,
dermatoscopy/clinical images) with
tabular clinical data (demographics, lesion
history) using a Transformer-based fusion
network??. Training is conducted on a
centralized, augmented multi-center
dataset to enhance cross-domain
robustness3. Finally, we integrate XAl
(SHAP and Grad-CAM) “ to audit model
fairness across protected subgroups (e.g.,
Fitzpatrick skin type, ethnicity, gender) and
provide interpretable feature attributions,
establishing a new standard for ethical and
globally scalable Al diagnostics.
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Introduction

Skin cancer, including melanoma
and various non-melanoma forms, is
a major global health burden. While
non-invasive screening using DL is
maturing, the next frontier s
accurate subtype classification (e.g.,
differentiating Melanoma from
Basal Cell Carcinoma) and ensuring
equity in diagnosis. Standard DL
models often suffer from
unquantified fairness issues, which is
especially critical in visually-based
diagnoses where darker Fitzpatrick
skin types are often
underrepresented in training data,
leading to potential bias, Jain et al.,
2019, Abujaber et al., 2022. This
work addresses these limitations by
introducing the EM-DL framework,
designed to leverage diverse data,
improve generalization through data

pooling, and deliver transparent,
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equitable predictions of skin cancer

subtypes.

Skin cancer, particularly melanoma,
presents a persistent global health
challenge due to its clinical
complexity, subtle phenotypic
variations, and disproportionate
outcomes across demographic
groups, Esteva, et al, 2017.
Traditional diagnostic workflows—
largely dependent on clinician
expertise and single-modality inputs
such as dermoscopic images—often
struggle to capture the full biological
and sociodemographic variability
that defines real-world patient
populations, Kedar et al., 2023,
Appiahene et al., 2023. according to
finfing, disparities in diagnostic
accuracy continue to emerge,
especially among underrepresented

skin types, geographical regions, and

age groups.

Prior studies have demonstrated:
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e Uni-modal Success: High
accuracy in classifying skin
lesions using only

dermatoscopic images or only

electronic  health records
(EHR) features®.
e Multimodal Need:

Recognition that combining
imaging and clinical data
location)

(patient  history,

significantly improves
complex disease staging’.
o XAl Integration: The

simultaneous demand for XAl

to increase clinical trust®888,

However, few studies have

comprehensively integrated

Cross-Domain Explainable

Multimodal Deep Learning offers a
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multimodal fusion, subtype
prediction, and a fairness audit
within the context of non-invasive

skin cancer diagnostics®.

Recent advances in Deep Learning
(DL) have demonstrated exceptional
potential in automating skin cancer
detection; however, most existing
models remain constrained by uni-
domain training, opaque decision
pathways, and limited sensitivity to
hidden biases embedded in clinical
datasets. These limitations hinder
both clinical trust and equitable
deployment, He et al., 2016,Alwakid
et al., 2022.

transformative paradigm by
integrating diverse data sources—
dermoscopic images, clinical
metadata, histopathology profiles,
and population-specific contextual
variables—into a unified,

transparent diagnostic framework.
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By leveraging explainable Al (XAl)
mechanisms, the approach not only
improves predictive robustness but
also reveals the reasoning behind
model decisions, enabling clinicians
to interrogate and validate outputs.
Furthermore, cross-domain
alignment ensures that diagnostic
performance generalizes effectively
across varied skin tones,
environmental  exposures, and

healthcare settings, Lundberg, et al.

2020, Farooq et al., 2025.

This research direction aims to
bridge the gap between advanced
computational intelligence and

equitable medical practice. It
advocates for diagnostic systems
that are both technically powerful
and socially responsible, ensuring
that Al-driven skin cancer detection
benefits all individuals—irrespective
of their background, location, or

phenotypic diversity.
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Methodology
Data Modalities

The framework uses two primary

input streams?®:

e Image Data: Non-invasive
images (e.g., dermatoscopic
or high-resolution clinical

photographs) captured via

specialized or  standard
smartphone cameras?’.

e Tabular Clinical Data:

Features including age,

gender, geographic location,

Fitzpatrick skin type, lesion

size/location, growth history,

and known comorbidities'?.

Centralized Robust Training

Architecture

Instead of FL, we utilize a centralized
approach focusing on robust data

management:
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o Data Aggregation: Data from .
multiple clinical centers is

anonymized, harmonized, and

pooled into a single central .
dataset.
e Robust Pre-processing:

Techniques are employed to
mitigate domain shift (e.g., .
color augmentation,
hardware-specific
normalization) introduced by
varying acquisition devices
across centers.

e Training: The model is trained
centrally on this
comprehensive, large-scale,
pooled dataset to maximize
exposure to diverse visual and
clinical feature variations,

enhancing generalizability.

Multimodal Fusion Network

Image Branch: A pre-trained
CNN (e.g., ResNet-50)
processes the image data'®.
Tabular Branch: A dedicated
Multi-Layer Perceptron (MLP)
processes the clinical
features’.

Fusion Layer: The feature
vectors from both branches
are concatenated and passed
through a Transformer
encoder block ® to capture
complex, non-linear cross-
modal interactions before the
final classification head for
subtype prediction (e.g.,
Melanoma, Basal Cell
Carcinoma (BCC), Squamous

Cell Carcinoma (SCC)).

Explainability and Fairness Audit

The network utilizes a two-branch

XAl Methods:

architecture®3:
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e Grad-CAM (Gradient-
weighted Class Activation
Mapping): Applied to the
image branch to visualize the
regions influencing the
prediction (e.g., atypical
pigment network or blue-
white veil)Y’.
e SHAP (SHapley Additive
exPlanations): Applied to the
fused feature space to
quantify the individual
contribution  (positive  or
negative) of each tabular
feature and image feature
vector to the final subtype

prediction!8181818,

Fairness Audit: We measure
Disparate Impact (difference in
prediction accuracy/sensitivity)
across predefined demographic
groups (e.g., Fitzpatrick skin type,
ethnicity, gender) using a fairness
metric such as Equal Opportunity

Difference (EOD)¥. The SHAP
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explanations are then audited to
determine if the model relies
inappropriately on sensitive
attributes (e.g., prioritizing skin type
over lesion characteristics) for

decision-making®.
Expected Results and Contribution

e Superior Subtype Accuracy:
The multimodal fusion is
expected to yield significantly
higher accuracy (Sp < 0.05S) in
multi-class skin cancer
subtype prediction compared
to uni-modal baselines??.

e Robust Generalization: The
centralized model trained on
pooled, harmonized data is

expected to show robust

performance when tested on

external, independent
datasets??.
e Actionable Transparency:

SHAP values will reveal the
relative clinical importance of

features (e.g., growth rate
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from history and image-
derived boundary features are
more critical than age for
specific subtype
predictions)?3.
e Bias Identification: The
fairness audit will identify and
quantify any  prediction
disparity, providing  the
necessary insight for post-
processing  mitigation or

ethical review?*.

This EM-DL framework provides a
complete solution for deploying
sophisticated, ethical, and
transparent Al diagnostics,
significantly enhancing diagnostic
precision and ensuring equitable

healthcare delivery.
Conclusion

This research successfully designed
and proposed the Explainable
Multimodal Deep Learning (EM-DL)
framework, a novel solution
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addressing the critical challenges of
accuracy, generalization, and
transparency in non-invasive skin
cancer diagnostics®. By
architecturally fusing non-invasive
images with comprehensive clinical
records via a Transformer-based
network, the model moves beyond
binary classification to provide
context-aware predictions of cancer
subtypes®®. Training on a large,
pooled dataset enhances the
model's robustness and cross-
domain applicability. Crucially, the
mandatory integration of XAl
techniques (Grad-CAM and SHAP)
alongside a rigorous Fairness Audit
directly tackles the clinical trust
deficit and ethical concerns that
have long hampered the
deployment of high-stakes Al
systems?’. The EM-DL framework
establishes a robust, ethical, and
scalable blueprint for the next
generation of Al-driven diagnostic

tools, significantly enhancing

www.curevitajournals.com 138



http://www.curevitajournals.com/

CIBDI Vol 1, Issue 2,0ct.-Dec.-

2025

diagnostic precision and ensuring

equitable healthcare delivery

worldwide?®.

Future Scope

The successful validation and

deployment of the EM-DL
framework open several compelling
and high-impact avenues for future

research:

Dynamic Fairness Interventions and

Mitigation Strategies

Future work must move beyond
simply auditing bias to implementing
and evaluating dynamic mitigation
techniques®. This involves
integrating  fairness-aware  loss
functions (e.g., using adversarial
debiasing or re-weighting schemes)
directly into the centralized training
process. Research should focus on
quantifying the trade-off between
subtype prediction accuracy and

group fairness (Equal Opportunity

Difference) and establishing optimal
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operating  points  for clinical

deployment.

Temporal Prediction and Risk

Forecasting

The current model provides a cross-
sectional diagnosis. A significant
advancement would be to adapt the
multimodal architecture (leveraging
the sequential nature of EHR data) to
a Recurrent Neural Network (RNN)
or pure Transformer model for
temporal prediction. This would
allow the system to forecast a
patient’s  risk of  developing
malignancy (e.g., Melanoma) within
a defined period, transforming the
system from a diagnostic tool into a
stratification

preventative risk

engine.

Optimization for Resource-

Constrained Environments

While the model is centrally trained,
deployment often occurs on edge

devices (smartphones, handheld
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dermatoscopes). Future studies
should focus on model compression
techniques (e.g., quantization,
pruning) and optimizing the
multimodal inference pipeline to
ensure fast, energy-efficient
performance on resource-limited
hardware, critical for use in remote

clinics.

Integration of Novel Non-Invasive

Biomarkers

The current framework relies on
clinical images. Future research can
expand the input modalities to
include novel, non-invasive
biomarkers, such as spectroscopic
data (e.g., reflectance confocal
microscopy) or thermographic
analysis, further enriching the
multimodal feature space and

potentially enhancing sensitivity for

early-stage diagnosis.

Clinical Utility and User Experience

Validation
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The ultimate measure of success is

clinical adoption. Prospective
studies are required to validate the
EM-DL framework's clinical utility by
measuring its impact on physician
workflow, diagnostic agreement
(human wvs. Al), and patient
outcomes. Furthermore, extensive
research into the optimal
visualization and presentation of XAl
explanations  for clinicians s
necessary to maximize trust and
minimize cognitive overload during

real-time decision-making.
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