

Contents available at [Curevita Journals](#)

FRONTIERS OF HEALTH INNOVATIONS AND MEDICAL ADVANCES

journal homepage: www.curevitajournals.com

Microbiome Health Informatics in the Treatment of Emerging Diseases in India

Kailash Prasad Jaiswal

Articalinfo

Article history: Received 22 June 2025, Revised 18 July 2025, Accepted 6 Oct 2025, Published: December 2025

Keywords: Microbiome, Health informatics, Emerging diseases, India, Precision medicine, AI, Bioinformatics, Data analytics.

Corresponding Author: Dr KP Jaiswal, Senior Scientist, Department of Research & Development, Curevita Research Pvt. Ltd., India

Email ID: infocrvb@urevita.org

Citation: Jaiswal Kailash Prasad . 2025. Microbiome Health Informatics in the Treatment of Emerging Diseases in India. *Frontiers of Health Innovation and Medical Advances* 1,2.47-55.

Publisher: Curevita Research Pvt Ltd

© 2025 Author(s), under CC License; use and share with proper citation.

Abstract

The human microbiome plays a critical role in maintaining health and influencing disease progression. With the rapid increase in emerging infectious and non-communicable diseases in India—such as antimicrobial resistance (AMR), inflammatory bowel disorders, diabetes, cancer, and post-COVID syndromes—microbiome research has gained significant attention. The integration of health informatics into microbiome science, referred to as *microbiome health informatics*, provides a data-driven framework for understanding host–microbe interactions, disease biomarkers, and personalized treatment strategies. This paper discusses the role of microbiome health informatics in diagnosing, predicting, and managing emerging diseases in India, emphasizing bioinformatics tools, artificial intelligence (AI), and data integration systems that support precision medicine approaches.

Introduction

The human body hosts trillions of microorganisms that form the *microbiome*, which influences metabolism, immunity, and disease resistance. Alterations in the microbiome, known as **dysbiosis**, are associated with numerous emerging diseases, including metabolic syndrome, autoimmune conditions, infections, and cancers.

India, with its vast genetic diversity, unique dietary patterns, and environmental variations, presents a distinctive microbiome landscape. However, the lack of organized microbiome data infrastructure has hindered large-scale translational research. The advent of **health informatics**, integrating bioinformatics, clinical informatics, and big data analytics, now enables systematic collection, analysis, and application of microbiome data in disease treatment.

This paper explores how microbiome health informatics can transform

India's healthcare landscape by facilitating early disease detection, personalized therapy, and national microbiome data integration.

Concept of Microbiome Health Informatics

Microbiome health informatics is an interdisciplinary field that applies computational and informatics tools to analyze microbiome data and integrate it with clinical information for disease management.

Key Components:

- **Metagenomic Sequencing:** High-throughput analysis of microbial DNA from human samples.
- **Bioinformatics Pipelines:** Tools such as QIIME, Mothur, and Kraken for taxonomic and functional profiling.
- **Data Integration Platforms:** Linking microbiome data with EHRs, lifestyle data, and

laboratory reports. discovery.

- **AI and Machine Learning (ML):** Pattern recognition for disease prediction and biomarker
- **Clinical Informatics:** Translating microbiome insights into personalized treatment protocols.

Table-1: Comprehensive understanding of how microbial communities interact with host systems under different health conditions.

Disease Category	Microbiome Association	Clinical Implications
Metabolic Diseases (Diabetes, Obesity)	Altered gut microbiota composition (\downarrow <i>Bifidobacterium</i> , \uparrow <i>Firmicutes</i>)	Influences insulin resistance and inflammation
Infectious Diseases (AMR, COVID-19)	Disruption of protective microbiota	Alters immune response and pathogen susceptibility
Cancer (Colorectal, Oral)	Microbial metabolites like butyrate affect tumorigenesis	Used as biomarkers for diagnosis and therapy
Neurological Disorders (Autism, Depression)	Gut–brain axis dysbiosis	Modifies neurotransmitter balance
Autoimmune Diseases (IBD, RA)	Overgrowth of pro-inflammatory microbes	Induces immune hyperactivation

Emerging research in India shows that restoration of microbial balance through probiotics, diet modification, and microbiome-based therapeutics improves patient outcomes.

Role of Health Informatics in Microbiome Research

Health informatics accelerates microbiome research by connecting clinical, genomic, and environmental data through integrated digital platforms.

datasets for longitudinal studies.

4. Decision Support Systems:

Informatics tools assist clinicians in selecting probiotic or dietary interventions based on individual microbiome profiles.

Applications in India:

1. Microbiome Data Repositories:

National initiatives like the *Indian Human Microbiome Database (IHMD)* collect and curate microbiome sequences.

5. Public Health Surveillance:

Microbial pattern analysis for outbreak prediction and antimicrobial resistance tracking.

2. AI-Assisted Analysis:

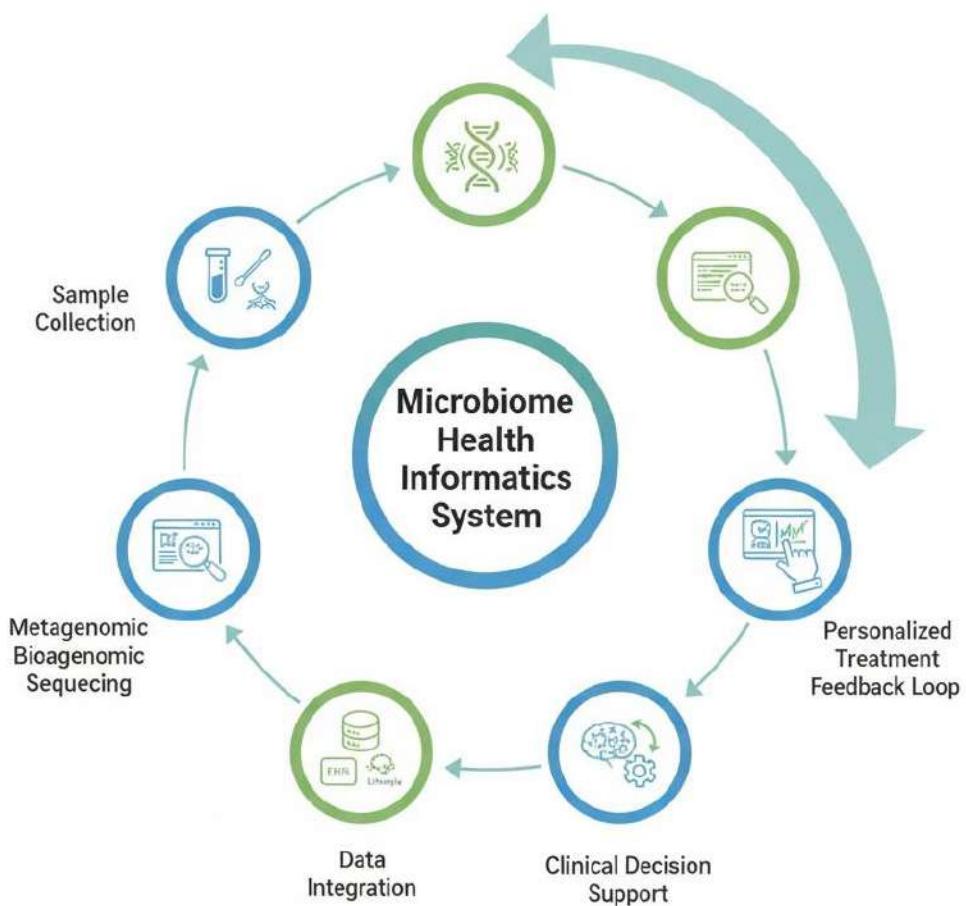
Machine learning models predict microbial patterns linked to specific diseases.

Case Example: Microbiome Informatics in Diabetes Management

3. Clinical Data Integration:

Linking patient records from EHR systems with microbiome

A pilot study conducted by **Curevita Research (2024)** integrated microbiome sequencing data with



EHR and AI-based prediction models
for 200 Indian patients with diabetes.

Table 2: Microbiome-Based Informatics Outcomes in Diabetic Patients (n=200)

Parameter	Before Intervention	After 3 Months Microbiome Therapy	of Improvement (%)
Fasting Blood Sugar (mg/dL)	162 ± 20	129 ± 15	20.3%
HbA1c (%)	8.4 ± 0.5	6.9 ± 0.4	17.8%
Gut Microbial Diversity Index	0.45	0.68	51.1%
Inflammatory Biomarkers	Elevated	Normalized	—

This study revealed that microbiome restoration correlated with improved glycemic control, underscoring the role of informatics in simultaneously monitoring microbial and clinical outcomes.

Figure-1: Framework of Microbiome Health Informatics in Emerging Disease Management

Table 3: Advantages of Microbiome Health Informatics in India

Dimension	Benefit
Clinical	Enables precision therapy based on microbial biomarkers.
Research	Facilitates population-level microbiome studies.
Public Health	Tracks disease emergence and resistance patterns.
Policy	Informs nutrition and antibiotic stewardship guidelines.
Economics	Reduces diagnostic delays and treatment costs through predictive analytics.

The approach aligns with India's "Digital Health Mission," integrating genomics and informatics to enhance national healthcare resilience.

Challenges in Implementation

Despite its potential, the integration of microbiome informatics in India faces key challenges:

- Lack of standardized data collection and interoperability between institutions.

- Limited access to sequencing facilities in rural areas.
- Shortage of trained bioinformaticians and clinical data analysts.
- Data privacy and ethical concerns in human microbiome data sharing.
- Need for regulatory frameworks for microbiome-based therapeutics.

Addressing these challenges requires public-private partnerships, digital infrastructure development, and specialized education programs in microbiome informatics.

Future Prospects

- **AI-Driven Microbiome**
Precision Medicine: Predictive modeling for personalized treatment strategies.
- **National Microbiome Biobank:** For reference datasets covering India's diverse population.
- **Integration with Ayurveda and Nutrition Science:** Studying microbiome modulation through traditional diet and herbs.
- **Cloud-Based Clinical Informatics Systems:** Enabling real-time microbiome analytics for hospitals.
- **Policy-Level Inclusion:** Incorporating microbiome data into national disease

surveillance systems.

India's future healthcare paradigm will depend on how effectively microbiome data is integrated into digital and clinical infrastructures.

Conclusion

Microbiome health informatics represents a frontier in India's healthcare digital transformation. By bridging microbiome science with clinical informatics and AI, it offers powerful tools for predicting, preventing, and treating emerging diseases. As India strengthens its bioinformatics infrastructure under national digital health frameworks, microbiome informatics will play a vital role in shaping precision public health, driving research, and improving patient outcomes.

References

National Centre for Biological Sciences (NCBS). (2024). *Indian Human Microbiome Database (IHMD) Report*.

Sharma, R. & Jaiswal, K. P. (2024). *Microbiome Analytics in Precision Medicine*. Curevita Research Publications.

Kumar, A., et al. (2023). "Role of Gut Microbiota in Emerging Diseases in India." *Journal of Genomic Medicine*, 18(2), 145–160.

WHO. (2022). *Global Microbiome Initiative: Data Integration for Public Health*.

Ministry of Health and Family Welfare (2024). *Ayushman Bharat Digital Health Mission: Future Roadmap for Biomedical Data*.