

Contents lists available at [Curevita Journals](https://Curevita.org)

Frontiers in Environmental Revolutionary Innovation

Hot Spots of Water Reservoirs of Madhya Pradesh: Implications for Environmental Management

Kuldeep Lakhera**Articalinfo****Article history**

Received 22 July 2025, Revised 18 Oct 2025,
Accepted 2 Nov 2025, Published: December 2025

Keywords: Madhya Pradesh, reservoirs, Indira Sagar, Bargi, Omkareshwar, Gandhi Sagar, eutrophication, sedimentation, water quality, environmental management.

Corresponding author: Dr. Kuldeep Lakhera, Faculty of Botany, Veerangana Rani Durgawati, Govt. College Tirodi Balaghat, MP, India

Citation: Lakhera Kuldeep, 2025. Hot Spots of Water Reservoirs of Madhya Pradesh: Implications for Environmental Management. *Frontiers in Environmental Revolutionary Innovation* 1,2,1-11.

Publisher: Curevita Research Pvt Ltd

© 2025 Author(s), under CC License; use and share with proper citation.

Abstract

Madhya Pradesh (MP) hosts several large reservoirs that provide irrigation, hydropower, drinking water and livelihoods, but many are showing environmental stress: eutrophication, sedimentation, degraded water quality and anthropogenic pressures. This paper identifies key reservoir “hot spots” in MP (Indira Sagar/Punasa, Bargi, Omkareshwar, Tawa, Gandhi Sagar and Ramsagar among others), summarizes primary environmental problems, and proposes a prioritized management framework combining catchment protection, pollution control, sediment management and community-based monitoring to improve ecological and socio-economic outcomes.

Introduction

Reservoirs are critical infrastructure in Madhya Pradesh — supporting agriculture, power and municipal water supply — yet they concentrate upstream impacts (soil erosion, agricultural runoff, untreated sewage, industrial discharges) that manifest as water-quality deterioration, biodiversity loss and reduced storage capacity. Recognizing reservoir hot spots is essential to target cost-effective, socially acceptable environmental management actions. Several studies and monitoring programs have documented eutrophication, heavy metals, and sedimentation problems in major MP reservoirs and their inflows.

Madhya Pradesh hosts several critical water reservoir hotspots that present unique challenges and opportunities for environmental management,

affecting both ecology and society. Effective management of these hot spots is vital to sustaining water resources, protecting biodiversity, and ensuring public health across the state.

Key Reservoir Hot Spots in Madhya Pradesh

- *Rihand Reservoir*: Subject to contamination from industrial effluents, though regulatory standards aim to minimize ecological impact. Periodic water quality monitoring identifies issues like suspended solids and organic matter from surrounding anthropogenic activities.
- *Kaliasot Dam*: Faces significant environmental stress due to siltation, encroachment, and sewage inflow, resulting in increased eutrophication, which affects biological

productivity and hydrobiological features of the area.

- *Chambal River Basin:* Threatened by over-extraction, damming, and sand mining upstream, which compromise water flow regimes, crucial for sustaining endemic species such as gharials and river dolphins. Collective small projects and lack of effective enforcement aggravate the situation, putting the sanctuary and river ecology under pressure.

- *Bundelkhand Region:* Experiences water scarcity, leading to health issues, human-wildlife conflicts, and contaminated drinking water sources, especially in dry periods. Climate change has amplified these stressors, with

less frequent but more intense rainfall events and increased competition for limited water resources.

Environmental and Socioeconomic Implications

- Water reservoirs are often recipients of untreated domestic waste, sewage, and run-off from urban settlements, leading to eutrophication, decreased water quality, and health hazards for humans and wildlife.
- Reduced water flow and sedimentation disrupt aquatic habitats, impacting fishing, agriculture, and endangered species. Such changes threaten local livelihoods and the socio-economic stability of dependent communities.
- The inefficient operation of urban wastewater treatment

infrastructure (such as STPs) contributes to water pollution, emphasizing the need for robust management and maintenance alongside community engagement in environmental protection measures.

and sand mining, and strengthening law enforcement to preserve essential wildlife habitats and biodiversity.

- Enhancing participatory management through expert consultations, public engagement, and transparent decision-making fosters long-term environmental sustainability.

Management and Sustainability Strategies

- Implementing and regularly upgrading sewage and effluent treatment systems to conform to regulatory standards and minimize pollution.
- Promoting decentralized wastewater treatment and encouraging the use of treated water in agriculture and horticulture to reduce pressure on potable supplies.
- Designating ecologically sensitive zones, curbing unsustainable water extraction

- Investing in adaptive strategies to counter climate change impacts, improve water storage, and support community resilience in drought-prone regions like Bundelkhand

Study area and hot-spot selection

This review focuses on large and medium reservoirs in MP with documented environmental concerns:

- **Indira Sagar (Punasa)** — the largest reservoir on the Narmada in MP; monitoring and research indicate nutrient increases and eutrophication risk.
- **Bargi Reservoir (Jabalpur area)** — long-term sedimentation studies and reservoir storage loss have been reported.
- **Omkareshwar** — environmental controversies around project impacts; monitoring shows trace metals and localized pollution issues in the Narmada at Omkareshwar.
- **Tawa Reservoir** — studies indicate significant soil erosion risk and sediment delivery from the catchment.
- **Gandhi Sagar and Ramsagar** — biodiversity and trophic-status

surveys show ecological pressures and local threats such as sand mining and habitat disturbance.

These sites were selected based on available peer-reviewed studies, government monitoring summaries, and targeted project reports that identify persistent water-quality and sedimentation problems.

Key environmental issues at reservoir hot spots

Eutrophication and nutrient enrichment

Multiple studies of Indira Sagar and other Narmada reservoirs report increasing nitrate and phosphorus concentrations and signs of

eutrophication, especially in shallow, slow-flowing zones and near urban/agricultural inflows. Eutrophication reduces dissolved oxygen, alters fish communities, and increases taste/odor problems for drinking water.

Sedimentation and capacity loss

Bargi and several other reservoirs show measurable sediment deposition reducing live storage and affecting hydropower and irrigation reliability. Sediment also buries littoral habitats and changes thermal profiles. Remote sensing and field studies quantify ongoing sedimentation and link it to land-use changes and erosion in catchments.

Chemical contamination and heavy metals

Monitoring around Omkareshwar and other Narmada reaches has detected

trace metals and pollution hotspots associated with industrial discharges and runoff, posing risks to aquatic life and human health via the food chain.

Habitat disturbance and illegal resource extraction

Reports and news of illegal sand mining and other extractive activities (e.g., Gandhi Sagar region) reveal threats to shoreline stability, aquatic habitats and water quality. Such activities intensify erosion, mobilize sediments and degrade biodiversity.

Inadequate monitoring and governance gaps

Although national/state monitoring exists (CWC, CPCB, MPPCB), gaps in spatial coverage, frequency, real-time data and integrated catchment-to-reservoir management limit timely action on hotspots. Comprehensive hot-spot identification requires

integrating monitoring, remote sensing and local stakeholder information.

nutrient management, timing to avoid runoff) upstream of eutrophic reservoirs (e.g., Indira Sagar).

Environmental management framework — prioritised actions

To address reservoir hot spots efficiently, the following integrated, prioritized framework is recommended.

Source-control in the catchment (highest priority)

- Implement targeted soil-conservation practices (contour farming, vegetative buffer strips, check-dams) in erosion-prone sub-catchments feeding sediment hotspots such as Bargi and Tawa.
- Promote nutrient-management plans for agriculture (balanced fertilizer use, integrated

Pollution control and wastewater treatment

- Identify point sources (urban sewage, industries) and ensure compliance with effluent standards; expand decentralized treatment near smaller towns draining to reservoirs. Use MPPCB/CPCB monitoring data to prioritize actions.

Sediment management and reservoir operation

- Integrate sediment-budget studies and periodic desiltation where feasible, combined with upstream catchment treatment

to reduce inflow sediment. For multipurpose reservoirs, adaptive reservoir operation (pulse releases timed with sediment transport windows) can reduce deposition in critical zones.

- Establish reservoir-level Management Units (multi-stakeholder) that integrate water resources departments, pollution control boards, local panchayats and user groups.

Ecological restoration and biodiversity protection

- Restore littoral vegetation, create fish refugia, and control invasive macrophytes in eutrophic areas. Support biodiversity surveys and protection in reservoirs with rich avifauna and fish assemblages (e.g., Gandhi Sagar, Ramsagar).

- Deploy a combined monitoring approach: (i) fixed water-quality stations for core parameters (DO, BOD, nutrients, heavy metals), (ii) periodic remote sensing to track turbidity and algal blooms, and (iii) citizen science (mobile sampling kits) to increase spatial coverage. Central/state monitoring reports and CWC hot-spot maps should guide station siting.

Governance, monitoring and community engagement **Case-level interventions**

- **Indira Sagar (Punasa):** Institute nutrient source inventories in the main tributaries; upgrade sewage treatment for towns along the reservoir; establish early-warning algal bloom monitoring in shallow embayments.
- **Bargi:** Prioritize upstream soil-conservation projects and evaluate selective desiltation of near-intake zones to protect hydropower/irrigation capacity.
- **Omkareshwar:** Strengthen industrial effluent monitoring and remedial measures for trace-metal sources; ensure EIA compliance for any new projects affecting the reservoir.

Research and capacity-building needs

- Develop sediment transport models coupled with land-use change projections to forecast storage loss and prioritize catchments for intervention.
- Invest in long-term ecological studies to understand reservoir trophic dynamics and to define acceptable ecological thresholds for management.
- Train local agencies and communities in rapid field diagnostics, data interpretation and adaptive management techniques.

Conclusion

Reservoirs in Madhya Pradesh are indispensable but face clear hotspots of environmental degradation that

threaten water security and ecosystem services. Addressing these requires a catchment-to-reservoir approach: source control, pollution abatement, sediment management, ecological restoration, strengthened monitoring and participatory governance. Prioritizing actions at identified hotspots (Indira Sagar, Bargi, Omkareshwar, Tawa, Gandhi Sagar, Ramsagar) will yield the highest environmental and socio-economic returns. Proactive environmental management of the hot spots associated with Madhya Pradesh's water reservoirs is crucial for maintaining ecosystem health, water quality, and sustainable development. Strategic interventions, robust law enforcement, and community involvement must be prioritized to mitigate pollution, ensure biodiversity conservation, and foster resilient

water management systems for the state's future.

References

- Saraswat H., Solanki M. 2020. Water Quality Assessment of Punasa Dam (Indira Sagar Dam), Madhya Pradesh. *Int J Adv Res.* (study reporting nutrient changes/eutrophication).
- Goel MK. 2024. Assessment of sediment deposition rate in Bargi Reservoir. (Sedimentation case study).
- Remote-sensing and RUSLE study, Tawa Reservoir: soil erosion and sediment analysis. 2023, *Journal of Earth Science & Climatic Change*
- Biodiversity survey: Gandhisagar Reservoir (faunal survey and threats). 2004.
- Pollution status and monitoring resources: CWC report on water-quality hot spots; CPCB NWMP data and state MPPCB reports. 2022. [Central Water](#)

Commission

- Pollution status of Narmada at Omkareshwar (trace metals study).2006. [Orient Journal of Chemistry](#)